Physiological functions of PsbS-dependent and PsbS-independent NPQ under naturally fluctuating light conditions.
نویسندگان
چکیده
The PsbS protein plays an important role in dissipating excess light energy as heat in photosystem II (PSII). However, the physiological importance of PsbS under naturally fluctuating light has not been quantitatively estimated. Here we investigated energy allocation in PSII in PsbS-suppressed rice transformants (ΔpsbS) under both naturally fluctuating and constant light conditions. Under constant light, PsbS was essential for inducing the rapid formation of light-inducible thermal dissipation (Φ(NPQ)), which consequently suppressed the rapid formation of basal intrinsic decay (Φ(f,D)), while the quantum yield of electron transport (Φ(II)) did not change. In the steady state phase, the difference between the wild type (WT) and ΔpsbS was minimized. Under regularly fluctuating light, the reduced PsbS resulted in higher Φ(II) upon the transition from high light to low light and in lower Φ(II) upon the transition from low light to high light, indicating that Φ(II) was, to some extent, controlled by PsbS. Under naturally fluctuating light in a greenhouse, rapid changes in Φ(II) were compensated by Φ(NPQ) in the WT, but by Φ(f,D) in ΔpsbS. As a consequence, a significantly lower ΣNPQ integrated Φ(NPQ) over a whole day) and higher Σf,D were found in ΔpsbS. Furthermore, thermal dissipation associated with photoinhibtion was enhanced in ΔpsbS. These results suggest that PsbS plays an important role in photoprotective process at the induction phase of photosynthesis as well as under field conditions. The physiological relevance of PsbS as a photoprotection mechanism and the identities of Φ(NPQ) and Φ(f,D) are discussed.
منابع مشابه
Contribution of PsbS Function and Stomatal Conductance to Foliar Temperature in Higher Plants
Natural capacity has evolved in higher plants to absorb and harness excessive light energy. In basic models, the majority of absorbed photon energy is radiated back as fluorescence and heat. For years the proton sensor protein PsbS was considered to play a critical role in non-photochemical quenching (NPQ) of light absorbed by PSII antennae and in its dissipation as heat. However, the significa...
متن کاملZeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens.
Nonphotochemical quenching (NPQ) dissipates excess energy to protect the photosynthetic apparatus from excess light. The moss Physcomitrella patens exhibits strong NPQ by both algal-type light-harvesting complex stress-related (LHCSR)-dependent and plant-type S subunit of Photosystem II (PSBS)-dependent mechanisms. In this work, we studied the dependence of NPQ reactions on zeaxanthin, which is...
متن کاملFunctional Aspects of Silencing and Transient Expression of psbS in Nicotiana benthamiana
MicroRNA-based gene silencing is a functional genomics tool for a wide range of eukaryotes. As a basis for broader application of virus-induced gene silencing (VIGS) to photosynthesis research, we employed a tobacco rattle virus (TRV) vector to silence expression of the nuclear psbS gene in Nicotiana benthamiana. The 22-kiloDalton psbS protein is essential for xanthophylland H-dependent thermal...
متن کاملElectron flow from PSII to PSI under high light is controlled by PGR5 but not by PSBS
Absence of the Proton Gradient Regulation 5 (PGR5) protein from plant chloroplasts prevents the induction of strong trans-thylakoid proton gradient (ΔpH) and consequently also the thermal dissipation of excess energy (NPQ). The absence of the PSBS protein likewise prevents the formation of ΔpH-dependent NPQ. This component of NPQ is called qE, which is nearly exclusively responsible for inducti...
متن کاملLight energy allocation at PSII under field light conditions: how much energy is lost in NPQ-associated dissipation?
In the field, plants are exposed to fluctuating light, where photosynthesis occurs under conditions far from a steady state. Excess energy dissipation associated with energy quenching of chlorophyll fluorescence (qE) functions as an efficient photo-protection mechanism in photosystem II. PsbS is an important regulator of qE, especially for the induction phase of qE. Beside the regulatory energy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant & cell physiology
دوره 55 7 شماره
صفحات -
تاریخ انتشار 2014